

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P) Volume-9, Issue-12, December 2019

 5 www.erpublication.org

Abstract—This paper presents a brief theoretical review on

deep neural network architectures, deep learning procedures,

as well assome of its possible applications. The paper focuses on

the most common networks structures: Convolutional Neural

Network (CNN), Deep Belief Network (DBN) and Stacked

Auto-encoders (SA). The building blocks which enabled the

construction of deeper networkssuch as Rectified Linear Unit

(ReLU) and softmax activation functions, convolution filters,

restricted Boltzmann machines and autoencoders, are

explained in the beginning and middle sections of the paper. A

few examples of hybrid systems are also presented at the last

sections of the paper. The paper concludes with some

considerations on the state-of-art work and on the possible

future applications enabled by deep neural networks.

Index Terms— Autoencoder, Boltzmann Machine,

Convolutional Neural Network, Deep Leaning Review.

I. INTRODUCTION

Neural networks algorithms have been applied to a wide

variety of complex tasks, inareas ranging from computer

vision, speech recognition, text translation, system

identification and control, among others.

The greatest advantage of this algorithm lies on their

ability to learn from a set of examples, without the need for

defining a set of explicit rules for a given task. After learning

how to solve a given problem, an artificial neural network

would generally perform in the same level or better than a

rule-based algorithm for the same task, especially for very

abstract problems such as in computer vision.

While neural networks were shown to theoretically be able

to represent any nonlinear function [1], in practice neural

networks were limited in depth and by long training times.

What allowedneural networks to achieve the high level of

performance seen today was the development of a series of

techniques for training deep networks in the past decade. This

set of techniques is what is now known as deep learning.

This paper presents a brief theoretical review on deep

Rômulo Fernandes da Costa, GraduateProgram in

ElectronicEngineeringAnd Computer Science, ITA, São José dos Campos

Sarasuaty Megume Hayashi Yelisetty, Graduate Program in Electronic

Engineering And Computer Science, ITA, São José dos Campos, Brazil
Johnny Cardoso Marques, Computer Science Division, ITA, São José

dos Campos, Brazil.

Paulo Marcelo Tasinaffo, Computer Science Division, ITA, São José
dos Campos, Brazil.

This work was funded by the Brazilian National Council for

Scientific and Technological Development (CnPq), in the form of

funding for the first author.

neural network’s structures, training procedures, and

enumerates some of its possible applications. The paper

focuses on presenting a general description on the inner

workings of the most common deep architectures, namely the

Deep Belief Networks (DBN), Stacked Autoencoders (SA)

and Convolutional Neural Networks (CNN).

In terms of structure, these three topologies can be

decomposed in fundamental blocks, such as the ReLU and

softmax activation functions, convolution filters, restricted

Boltzmann machines and autoencoders. These blocks, along

with the associated architectures, are described in the middle

sections of the paper.

A few examples of hybrid systemsare also presented at

later sections of the paper. The paper concludes with some

considerations on the state-of-art work and on the possible

future applications enabled bydeep neural networks.

II. BASIC CONCEPTS

A. Artificial Neuron Structure

An Artificial Neural Network (ANN) is a parallel

computational structure loosely inspired on real neural

networks,capable of learning from large amounts of data. The

network is trained to generate a set of outputs from the inputs

presents on the training data. Thus, an ANN can act as

anuniversal approximator of nonlinear functions [1].

These networks are composed of several small units, called

neurons or nodes, grouped in multiple sequential layers. Each

neuron in a layer receivessignals fromneurons localized in

other layers or from the network’s input itself.The neuron

then responds by emitting a signal of its own, propagating the

information forward to the next layers in the network.

The output signalynfired by a neuron as a response to an

input vector xn isdescribed by:

 () (1)

Here, and are the connection weight vector and

activation bias respectively.The mathematical function is

a nonlinear function called "activation function” and

describes the response of the neuron to its collective input.

Historically, used to be simple linearfunctions (such as

in the original perceptron[2]) and sigmoid functions, but with

the popularization of deeper networks, less computationally

expensive options such as Rectified Linear Unit (ReLU)

started to be employed. Fig. 1 shows a plot ofsome of the

commonly used activation functions.

A Brief Didactic Theoretical Review on Convolutional

Neural Networks, Deep Belief Networks and Stacked

Auto-Encoders

MSc.Rômulo Fernandes da Costa, MSc.Sarasuaty Megume Hayashi Yelisetty, Dr. Johnny

Cardoso Marques, Dr. Paulo Marcelo Tasinaffo

A Brief Didactic Theoretical Review on Convolutional Neural Networks, Deep Belief Networks and Stacked

Auto-Encoders

 6 www.erpublication.org

Fig. 1 – Common activation functions.

A special activation function is the “softmax” function,

which normalizes the sum of outputs of all neurons of the

previous layer to the interval of 0 to 1. The softmax output

generatedby a neuron of raw output xi is given by:

 ()

∑

 (2)

Where n is the number of possible classes considered by the

Softmax layer.

This is useful for classification problems, where it is

necessary to calculate the probability of the input to belong to

a given i class, among all possible n classes [3].For example,

assume that a softmax layer receives an input , while all

other inputs are zero. This will cause the layer to increase

the probability of the i class and reduce the probability of all

other k classes. The output of the network for this scenario is

shown in Fig. 2.

Fig. 2 – Softmax activation function.

B. Feed-Forward and Recurrent Networks

Neural Networks can be categorized in two groups

depending on information flow direction: feedforward

networks and recurrent networks.

Feedforward networksare designed so that input

information is propagated layer to layer in a unidirectional

manner.There are no feedback connectionsbetween themore

advanced layersto theprevious layersin the network. This is

appropriate for time invariant problems, as the network is not

required to keep track of past events. Anexample is the

multi-layer perceptron (MLP)[4], Convolutional [5] and

Deep Belief networks [6]. An example of feedforward neural

network is shown at the left side of Fig. 3.

A recurrent network (also called feedback network) allows

information to also flow backwards in the network, allowing

the network to remember paststates. This creates a nonlinear

dynamical system [7] which can be trained to contextualize

and retain some of the information already processed by the

network, making the network more appropriate to tackle time

variant problems.This added complexity comes with a cost.

As the ANN’s behaves as a highly nonlinear dynamical

system, more complex learning algorithms are required to

ensure the network’sstability [8]. Some examples of

dynamical ANN are the Hopfield [4], Elman[9] and the Long

Short-Term Memory (LSTM)[10] networks.An example of a

recurrent neural network is shown at the right side of Fig. 3.

Fig. 3 – Example of feedforward and recurrent neural

networks.

C. Training as a nonlinear parameter estimation task

The training procedure of an ANN, in which the networks

learns to replicate a given function from data, can be thought

as a parameter estimation problem.An ANN learns by

changing the weights of the connections of its neurons, so as

to minimize anestimation error (such as Mean Square Error,

MSE) between the correct output and the output generated by

the network. Due to the nonlinearity present in activation

functions, directmethods such as least squares estimation

cannotbe applied, and therefore, iterative methods are

required[11].

The most common method for adjusting the weights in a

neural network is the backpropagation algorithm and its

variations, such as the Levenberg-Marquardt method [12].

The algorithm performs gradient descent over an

error-measuring function, by applying the chain rule over

each layer to find the appropriate adjustment for every weight

present on the network.

For shallow networks with one or two hidden layers, it is

possible to use backpropagation algorithms over the entire

network, but for deeper architectures, the gradient either

fades away over layers (referred as “vanishing gradient

problem”) or increases indefinitely (referred as “exploding

gradient problem”), with the former problem especially

prevalent on recurrent networks[13].

Another issue is data availability and reliability. For

problems where data is often readily available but just as

often mislabeled (for example, user generated content in

video streaming websites), unsupervised learning

methods(non-reliant on labeled data) are required.

In some other problems, training data is limited orfewer

than the number of parameters to be adjusted.This enables the

network to simply memorize the training data, generating an

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P) Volume-9, Issue-12, December 2019

 7 www.erpublication.org

exact copy of the output during training, rather than

generalizing for the underlying model. This problem is

referred as“overfitting” in the literature [13] [14].

To prevent these problems, several differentcomponents

for building deeper nets were designed,such as restricted

Boltzmann machines, autoencoders and convolution kernels,

providing the foundation of what is now known as “deep

learning”. A common traitshared by all of these structures is

that they provide means forextracting salient features

contained in input data, generating a more abstract set of

inputs to beprocessed by the next block. The training at this

point is in most cases unsupervised. The final blocksprovide

a highly abstract preprocessed data, which is then used for

generating the network’s output. The learning in this final

stage is supervised, that is, uses the labeled data in the

training set. The following sections describe these structures

in more detail.

III. DEEP BELIEF NEURAL NETWORKS

A. Boltzmann Machines

A Boltzmann Machine (BM) is a network model

introduced by Hinton,Sejnowski and Ackley in 1985[15].

This structure resemblesa Hopfield network, in the sense that

both are capable of learning the internal distribution of a

training set. However, aRestricted Boltzmann Machine

(RBM)uses a stochastic activation function based on the

Boltzmann distribution, and its training is inspired on

thermodynamic principles.

This network comprises a visible input layer and a hidden

layer, with each neuron being connected to all other neurons

in the network. The visible layer contains neurons whose

states can be directly overridden by an input signal, while

hidden layer comprises neurons which can only be accessed

by the visible neurons. This topology is shown at the left side

of Fig. 4.

Each i-th neuron has two states, “on”() or

“off”(). The networks internal energy Eis given by:

 ∑ ∑ (3)

Where is bias of thei-th neuron, and is the

connection weight between the i-th and j-th neurons. The

energy difference between “off” and “on” states of the i-th

neuron is given by:

 ∑ (4)

The probability of the i-th neuron setting its state to “on”

follows the Boltzmann distribution,hence the network’s

name.

()
 (5)

Where T is analogous to system temperature. It can be

noticed that (3) (4) and (5) model a system steadily losing

energy, eventually reaching a thermal equilibrium state.

BM training has the goal of minimizing the difference

between the probability distribution of the state

ofvisibleneuronsat thermal equilibrium, P
-
, and the

probability distribution of the training samples, P
+
.The

difference between two distributions can be measured by the

Kullback-Leibler’s (KL) divergence, G:

 ∑ () (
 ()

 ()
) (6)

Where V denotes each one of the visible input neurons.

Fortunately, the gradient of G in relation to any given weight

 has a very simple form:

(

) (7)

Where
 is the probability of both i-th and j-th being

“on” at thermal equilibrium, with all input neuronsoverridden

by a training signal, while
 denotes the probability of the

same event happening without the influence of the training

signal.

This indicates that a simple rule can be applied to change

the weights. Assuming a step size of , the variation on

weights and on biases is given by:

 (

) (8)

 (

) (9)

While (8) and (9) are fairly simple learning rules, the

excessive complexity of the BM’s topology causes the

learning to be inefficient for complex problems. Likewise,

the training requires that the BM is simulated until it reaches

thermal equilibrium, which increases training complexity

[16].

An improvement on training performance can be achieved

restricting BM’s topology, creating a so-called restricted

Boltzmann Machine (RBM), with the most common

restriction being eliminating connections between neurons in

the same layer [17]. This RBM is shownat the right side of

the Fig. 4.

Fig. 4 – Unrestricted and Restricted Boltzmann Machines

The neuron state determination process is also simplified

as a result of the topology restriction. The probability of a

givenneuron (visible or hidden) being active, given the

current state of the neurons on the opposite layer, can now be

written similarly to (1).

 () (∑) (10)

 () (∑) (11)

Where () and () are the probability of a

visible or a hidden layer being on the active state, is the

connection weight between neurons iand j, and and are

biases for the visible and hidden neurons respectively. In the

RBM’s case, is a logistic function.

The learning function can also be simplified, as to not

depend on simulating the machine to its thermal equilibrium.

Instead, the RBM can be simulated for a k number of cycles,

with the state of all neurons (including those on the hidden

layer) being sampled for the learning rule.

Initially, the visible neurons in the RBM are overridden by

with an input vector contained in the training set, so thatall

hidden neurons change theirstate accordingly to (11). The

state of all neurons is represented by . The

A Brief Didactic Theoretical Review on Convolutional Neural Networks, Deep Belief Networks and Stacked

Auto-Encoders

 8 www.erpublication.org

visible neurons are then unclamped, sothat the network isfree

toreconstruct the input vector using the information stored in

the hidden layers. The neurons are then updated sequentially,

with their states being set accordingly to (10) and (11). This

procedure is called Gibb’s sampling. After k cycles

simulating the network by Gibb’s sampling, the state of the

neurons is then sampled. The weight

adjustment is given by:

 () (12)

This algorithm is called Contrastive Divergence, or CD-k

[18]. It is much faster learning algorithm, as it does not

require simulating the RBM to its equilibrium point. Even

though the learning rule in (12) does not follow the divergent

Gdefined on (6), it stillprovides a sufficiently precise

approximation for training the RBM, even for a single

simulation cycle (k=1) [19].

B. Deep Belief Networks (DBN)

Deep BeliefNetworks (or more commonly Bayesian

networks) are statistical models that represent a set of

variables along with their conditional dependencies. This

network can infer the probability of an event being caused by

one of several possible known causes.An example of this

structure is shown in Fig. 5, with each event’s dependency on

others is marked with arrows.

Fig. 5 – Belief network general structure.

This network can infer variables, parameters and hidden

variables from the distribution of a given event. Thiscapacity

for inference and general structure has been perceived as

similar those found onBoltzmann Machines in the

1980’s[14], but due to the inherentcomplexity of BM’s

topology and its training, this similarity could not be further

explored until two decades later.

The creation of RBM’s in the late 1980’s [16] andthe

development of faster algorithms for their training in early

2000’s [18] led to development of deep belief nets

(DBN)composed of stacked RBMs. The proposed structure is

seen on Fig. 6.

Fig. 6 – Stacked RBMs used on a DBN.

The structure presented in Fig. 5 shows a stack ofNRBMs.

The visible layer of the bottom RBM is used as the input layer

of the DBN, with the hidden layer acting as input for the next

RBM. All RBMs are connected in the same way, forming a

sequential structure up to hidden layer of the last RBM,

which providesthe output of the stack.

Each one the RBMs are trained separately in an

unsupervised manner, from the bottom RBM’s to the top.

After finishing training an RBM, their hidden neurons will

register some of the most salient characteristics contained on

its training inputs. The output of the trained RBM is then used

as a training input for the next RBM in the stack, and so on.

As a result, each RBM extracts a feature present in the

training data, with higher layers extracting increasingly more

abstract information [20].

After training all RBMs in the stack, the output from the

top layer can be used to activate a classifier network using the

softmaxfunction. The training in this stage is now supervised,

as the labeled datais associated with the features extracted by

the stack[21].

IV. STACKED AUTOENCODERS

A. Autoencoders

Another building block which can be stacked to form a

deep network is the autoencoder, also known in literature as

anauto associator. An auto-encoder is a neural network

designed for creating an efficient representation of its input

data, often with reduced dimensionality. Like the RBM, it

can be used for extracting features from an unlabeled set of

data, although their training procedures are quite different

[22].

The traditional autoencoder is a simple network trained to

regenerate its own input as its output, hence the structure’s

name. Learning can be done through the standard

backpropagationalgorithm, in the same way as the MLP.As

the training goal is to learn its own input value,it does

notrequire labeled data, making it a form of unsupervised

learning.

After the training is completed, the hidden layers of the

autoencoder will have learned a useful encoding of the data,

based on the distribution of the training data. Likewise, the

output layer will also learn a form to decode and regenerate

the original data from its encoding [23].

A common issue of the traditional autoencoder’s training

is that the network has the possibility of learning the identity

function, preventing the autoencoder from learning a more

useful representation of the data.

To avoid this problem, a few variations of the autoencoder

have been designed, such as denoising autoencoders

andsparse autocoders. Denoising autoencoders explicitly

introduces noise in the input’s training set, so that the

network is trained to filter the noise present in the

input[24].The sparse autoencoder introduces an additional

penalty during training to constrainhidden neurons

activations and weights to a set of predetermined values,

preventing the network from learning the identity[25]. Both

techniques forces the autoencoder to rely on features

contained in the training data.

A simpler solution for the issue is by having a smaller

number of hidden neurons than inputs in the autoencoder,

creating an under-complete system.This prevents the network

from learning the identity function, although at the cost of

learning less features compared with over-complete

autoencoders [21].

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P) Volume-9, Issue-12, December 2019

 9 www.erpublication.org

An illustrated example of a MLP network trained as an

autoencoder is shown on Fig. 7. After training the MLP either

traditionally or using any of the variants presented, the

autoencoder’s input x is encoded by the hidden layer, creating

aencoding function x’=fencoding(x). The output

layerapproximatelyreconstructs the original input as .

Fig. 7 – Example of an autoencoder

B. Stacked Autoencoders

Autoencoders can be stacked to create a single deep

network,similarly to how RBMs are used on a DBN. The first

autoencoder is trained to encode and regenerate the

network’s input. After training, the decoding layer is

discarded, and the hidden layers’ output (the encoded

information x’) is used as input to train the next autoencoder.

This procedure is repeated for each autoencoder in

succession. After all autoencoders in the stack have been

trained, the stack is then connected to the input of a fully

connected network, which will generate the output of the

network. Finally, all layers are then fine-tuned using

supervised training[13].

Fig. 8 shows the structure of a deep network formed by the

stacked autoencoders (SA). While this is very similar to DBN

in structure, SA composed of traditional auto-encoders has

slightly inferior results compared to DBN[26] due to the

CD-k algorithm being a better approximation of

log-likelihood gradient than the reconstruction error gradient,

while the denoising variation of the autoencoder performed

similarly to DBN [13].

Fig. 8 – Stacked autoencoder structure

V. CONVOLUTIONAL NEURAL NETWORKS (CNN)

A. CNN development history

Both methods for creating the deep neural nets presented

previously, DBN and SA, make use of greedy layer-wise

training to avoid the vanishing gradient problem. Until 2006,

there were no means for training deep networks withfully

connectedlayers.

However,a specialized type of deep network that could be

trained traditionally was developed two decades prior to the

appearance of DBNs. These networks are the Convolutional

Neural Networks (CNN or alternatively ConvNet). They

have a fanned-out structure, which simplify its training.

Convolutional neural networks follow an architecture

loosely inspired on the visual system of living beings. The

works of Hubel and Wiesel, at the end of the 1950s and

through the 1960s, gave start to this line of research by

presenting the response generated by the striate cortex of cats

to several moving stimuli of light [27].

In their experiment, it was found that some isolated

neurons (referred by the authors as “simple” cells) fired only

when subject to image edges in veryspecific positions and

orientations, while some others neurons with larger receptive

fields (referred as “complex” neurons) reacted specifically to

more complex stimuli, whilebeing insensitive to changes in

position. These properties had been verified in the nervous

system of cats[26] and monkeys [28].

The concept that an image could be processed by several

parallel processing units, each one absorbing increasingly

abstract features of the image inspired the development of the

“neocognitron” network by K. Fukushima, which is

considered to be the first example of CNN in literature [29].

The neocognitron is composed of several sequential modules,

with each module comprising two layer of neurons. The first

layer contains unitsthat resemblethe simpler neurons

described by Hubel and Wiesel, which are responsible for

extracting edges from the image.The second layer contains

units that resemble the complex neurons, which are less

sensitive to position. The complex neurons’ outputs feed the

next module, creating a serialized structure similar to DBNs

and SA. Another similarity with modern networks is that the

Neocognitron uses unsupervised training to learn features

present in the data.

The work inspired the design of many other networks

based on this hierarchicalarchitectures, such as the

convolutional network developed by LeCun in 1989 for

recognizing hand-written digits [30].

This networkaccepts as input an image of 16x16 pixel

andcontains three hidden layers.A single output layer

classifiesthe ten possible digits in the input image.

The first hidden layer has 12 convolution kernels, each one

composed of 64 neurons, which scans the image for local

features. By performing spatial convolution of the input with

each kernel,twelve feature maps of 8x8 pixelsare obtained.

The second layer has 12 convolution kernels, each one

with 16 neurons, creating a 4x4 pixel feature map. The third

layer had 30 neurons and processed the more abstract features

contained in the image. Backpropagation was applied to learn

all connection and kernel weights.

Further work on this network led to the development of

Lenet-5 by the same author in 1998[31], which had a

profound impact in the field of computervision. Lenet-5 has 7

layers and accepts a 32x32 pixel image as its input.

The first layer extracts 6 feature maps of 28x28 pixels,

A Brief Didactic Theoretical Review on Convolutional Neural Networks, Deep Belief Networks and Stacked

Auto-Encoders

 10 www.erpublication.org

obtained by performing convolution of the input with a 5x5

pixel kernel. The second layer subsamples the feature maps

into smaller feature maps of 14x14 pixels, by subdividing the

feature maps into groups of 2x2 pixels and averaging their

values.

The third layer extracts 16 feature maps of 10x10 pixels,

byperforming convolutions with5x5 pixel kernels. The 16

feature maps arethen subsampled by the fourth layer in the

same way as the second layer, generating 16 feature maps of

5x5 pixels.

The fifth layer extracts 120 feature maps of 1x1 pixels, by

convoluting its input with 5x5-pixel kernels. Due to the size

of the resulting feature map (composed of a single pixel), this

layer acts as a fully connected layer.

The sixth layer has 84 neurons. This number has been

chosen so that its output can be rearranged to form a

7x12-pixel image. The seventh and final layer classifies the

network’s input, through Euclidean Radial Basis Functions

(RBF) units. There is one RBF unit for each possible class,

with the centers hyper-parameters of each RBF purposely

defined to compare the image generated by the sixth layer

with all of the possible classes.

LeNet 5 was superior to many other character

identification algorithms of its time. This topology based

onsequential convolutions and sub sampling layers is still

used in modern CNNs.In fact, the best algorithms for object

identification on computer vision are based on CNNs, with

examples such as GoogleLeNet, a 22-layer deep CNNwhich

achieved a classification error of about 6% on ImageNet’s

Large-Scale Visual Recognition Challenge in 2014[32][33].

The use of GPUs for training CNNs, a technique introduced

in the 2000’s,greatly reduced learningtimes [34][35], further

popularizing this architecture.

B. CNN structure

Current CNNs are composed of several layers reducing in

size, with each layer applying a form of compression on its

input data. The neurons on these layers are not fully

connected to the other layers, greatly reducing the number of

weights to be adjusted by training. Data is reduced in size

from layer to layer, until the final layers.The final layers are

usually densely connected, so as to usethe compressed data to

perform classification or regression. An example of typical

CNN structure used for classifying images is shown in Fig. 9.

Fig. 9 – Typical CNN structure for image classification

The initial compression stage is composed of two types of

layers, convolution layers and pooling layers. Convolution

layers are the main building block in CNNs. The layer’s input

is swept by a filter (the convolution kernel) designed to

extract a specific feature. This extraction is done by

performingcross-correlation (convolution over a mirrored

kernel) of the input with the kernel, centered on the first

element of the input. After each convolution, the

kerneladvancesa number of elements on the input before

executing the next convolution.The number of elements

advanced is called “stride”. This procedure is repeated until

the entire input is swept by the kernel. A ReLU function may

be used after each convolution to increase nonlinearity in

activation [36].

The second type of layer on the compression stage of

CNNs the pooling layer. These are usually placed after a

number of convolution layers. Pooling refers to down

sampling the input by partitioning it into smaller groups of

elements, and then performing anonlinear function over the

subgroup elements, called the pooling function. The output of

the pooling function for each subgroup is used as the layer’s

output. Historically, averaging and tanh was used as pooling

function as seen in LeNet-5[30], but recentCNNs usemax, as

it can converge faster and have better generalization in

practice [37].

Fig. 10 shows the results of an example image convoluted

by four 3x3 pixel kernels, followed by a 2x2 pixel max

pooling. The white squares represent an element of value1,

gray squares represent0 and black squares -1. Notice that

each kernel extracts a different set of edges from the image.

Fig. 10 – Image processed by convolutional kernels and max

operations.

The second stage performs generates the output of the

network using the data acquired by the first stage. The final

layers are fully connected, with large numbers of adjustable

parameters. To improve learning speed and preventing

neuron saturation, ReLU is often used as activation

function.Another problem caused by the large number of

weights is overfitting, as the number of examples is often

outnumbered by the number of parameters in several

applications.

A recent developedtechnique for preventing overfitting is

“dropout”. This technique consists in randomly deactivating

neurons during training with probability p. This forces the

network to not rely on a few specific neurons, therefore

improving network robustness. After training, all neurons

may be used normally, buttheir outputs(or their

corresponding weights) should be multiplied by a factor 1-p

to compensate for the deactivation procedure[38].

VI. HYBRID NETWORKS

A. Generative Adversarial Networks (GAN)

The three networks presented previously can be combined

with other topologies and artificial intelligence techniques in

order to create a larger hybrid network. This is done to allow

domain-specific networks to function beyond their original

design purposes and limitations. The most common hybrids

combine CNN architectures with other technologies, justified

by the CNN’s simplicity and impact in the computer vision

community.

International Journal of Engineering and Technical Research (IJETR)

ISSN: 2321-0869 (O) 2454-4698 (P) Volume-9, Issue-12, December 2019

 11 www.erpublication.org

A recent example is Generative Adversarial Networks

(GAN) created in 2014 [39]. This network combines two

smaller networks acting in opposing roles, as a generative

network and a discriminator, often in a form of zero-sum

game. Differently from the majority of other deep networks,

which are focused on classification problems, GANs are

primarily used as a generative model, and are often used in

practice for generating synthetic images [40].

The GAN’s generative network, G, is trained to generate

data samples that match thedistribution presenton the training

set, similarly to how a Boltzmann machine is trained to

generate new data. The second network, the discriminatorD,

is trained to identify the synthetic data created by the

generative network among the real examples contained in the

training set. This discriminator is often a CNN.

Both networks are trained alternately, in a form so that the

loss functionfor Gand Dcanbe rewritten to represent

aminmax game. Training is often done using gradient descent

algorithms, but due to the nature of the game between G and

D, the algorithm may fail to converge, as improvement of one

network may incur a decrease on the adversary performance

[41].

This procedure drives both networks into becoming better

at generating and detecting the synthetic data. The training

proceeds until the synthetic data created by G is

undistinguishable from the training data.

B. RBM –CNN hybrids

Due to its generative capability and feature extraction

properties, RBMs are often paired with CNNs and other

Artificial Intelligence (AI) techniques.

A structure proposed in [42] is a CNN-RBM hybrid, for

face verification in wild conditions. The last stages of CNN

can be connectedto stack of RBMs, creating a form ofDBN

on top of the convolutional stages. The method is shown to

have comparable results with other high precision methods,

with the advantage of not requiring hand-made filters for

extracting features and strong alignment.

Another example of a CNN-RBM hybrid is shown in [43]

for speech recognition. The structure presented in this work is

a CNN that uses RBMs as the convolutional filters, creating a

stochastic convolution layer. The RBMs can be pretrained to

learn the correct filters. This improves network performance

if the training set is small.

C. Autoencoder hybrids

Autoencoders hybrids are not as common as RBM and

CNN hybrids, as the classical forms of the autoencoder lack

some of the interesting properties of the former topologies.

However, a recentvariation of the autoencoder called

variational autoencoder (VAE) can act as generative model,

which is a desirable property for creating hybrid systems.

A VAE combines variational inference and deep learning

in a direct probabilistic graphical model. Rather than directly

mappingthe input valueslike in the classical autoencoder’s

training, the VAE’s trainingaims to model the parameters of

the training set distribution, treating the set of inputs as

probabilistic values.The training tries tominimize the KL

divergence between the training input set and the

reconstructed set.

After training, a VAE will learn not only the mean value of

a given input, but also its variance. Thus, it is able to

regenerateinputs though stochastic procedures[44]. This

property can be used in conjunction with a CNN and

recurrent models to generate text as presented in [45].

Moreover, a VAE can act as generative network for use in a

GANs, as reported in [46].

VII. CONCLUSION

This paper has described the basic building blocks which

constitute what is now known as Deep Learning, as well as

some of the most common network architectures that can be

built with those blocks.

The increase of depth allowed neural networks to achieve

much higher levels of precision as a function approximator

compared to their shallow counterparts. While any

shallownetworks capable of approximating a function given

enough neurons, the number of neurons required for a precise

approximation increases exponentially as a result of the curse

of dimensionality. The addition of extra layers in the network

leads to a higher level of abstraction in data processing, and

therefore higher precision, as seen on all of the architectures

shown in the paper.

As a result of this increase on precision, deep neural

networks have been used as solution for many problems for

which there’s no closed analytical solution, with many

networks achieving much better performance over traditional

rule-based algorithms.With the increase on data availability

and hardware capacity, it should be expected that many of the

rule-based algorithms used today for tacklingcomplex

problems to be improved or even be superseded by

neural-network based approaches in the near future.

ACKNOWLEDGMENT

We’d like to thank Dr. Osamu Saotome for his advice

during the preparation of this article.

REFERENCES

[1] K.Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward

networks are universal approximators”.in Neural networks,2(5), 1989,

pp-pp 359-366.
[2] F. Rosenblatt. "The perceptron: a probabilistic model for information

storage and organization in the brain." Psychological review

65.6,1958, 386.
[3] I. Goodfellow, Y.Bengio, andA.Courville.“Deep learning”. MIT press,

2016.

[4] R.P. Lippmann. "An introduction to computing with neural nets." IEEE
Assp magazine Vol. 4, no.2 1987. pp 4-22.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based
learning applied to document recognition." Proceedings of the IEEE

86, no. 11,1998. pp. 2278-2324.

[6] G.E Hinton, S. Osindero, and Y.W. Teh. "A fast learning algorithm for
deep belief nets." Neural computation 18, no. 7, 2006, pp. 1527-1554.

[7] J. Singh andN.Barabanov. “Stability of discrete time recurrent neural

networks and nonlinear optimization problems”. Neural Networks, 74,
2016, pp.58-72.

[8] J.N. Knight, “Stability analysis of recurrent neural networks with

applications”. Fort Collins, CO: Colorado State University.2008.

[9] Y. Cheng, Wei-Min Qi, and Wei-you Cai. "Dynamic properties of

Elman and modified Elman neural network." Proceedings.

International Conference on Machine Learning and Cybernetics. Vol.
2. IEEE, 2002.

[10] S.Hochreiter and J.Schmidhuber. "Long short-term memory." Neural

computation, vol 9 no.8 1997, pp. 1735-1780.
[11] B. J.T Morgan. "Non-Linear Parameter Estimation- an Integrated

System in Basic." Journal of the Royal Statistical Society: Series C

(Applied Statistics) 37, no. 3,1988, pp. 449-450.
[12] M.T. Hagan, and M. B. Menhaj. "Training feedforward networks with

the Marquardt algorithm." IEEE transactions on Neural Networks 5,

no. 6, 1994. pp. 989-993.
[13] Y. Bengio. "Learning deep architectures for AI." Foundations and

trends® in Machine Learning 2, no. 1. 2009, pp. 1-127.

A Brief Didactic Theoretical Review on Convolutional Neural Networks, Deep Belief Networks and Stacked

Auto-Encoders

 12 www.erpublication.org

[14] S. Venkataraman, D. Metaxas, D. Fradkin, C.Kulikowski, and I.

Muchnik. “Distinguishing mislabeled data from correctly labeled data
in classifier design”. In 16th IEEE International Conference on Tools

with Artificial Intelligence, November 2004, pp. 668-672.

[15] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. "A learning algorithm
for Boltzmann machines." Cognitive science 9.1 1985, pp. 147-169.

[16] A. Fischer and C. Igel. "Training restricted Boltzmann machines: An

introduction." Pattern Recognition 47.1,2014, pp. 25-39.
[17] P. Smolensky. “Information processing in dynamical systems:

Foundations of harmony theory.” No. CU-CS-321-86. Colorado Univ

at Boulder Dept of Computer Science, 1986.
[18] G.E. Hinton. "A practical guide to training restricted Boltzmann

machines." In Neural networks: Tricks of the trade, pp. 599-619.

Springer, Berlin, Heidelberg, 2012.
[19] G.E. Hinton. "Training products of experts by minimizing contrastive

divergence." Neural computation 14, no. 8,2002, pp. 1771-1800.

[20] G.E. Hinton, S. Osindero, and Y.W. Teh. "A fast learning algorithm for
deep belief nets." Neural computation 18, no. 7. 2006,pp. 1527-1554.

[21] A. Mohamed, G. Dahl, and G. Hinton. "Deep belief networks for phone

recognition." In: Nips workshop on deep learning for speech
recognition and related applications, vol. 1, no. 9, 2009. p. 39.

[22] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, andP.A. Manzagol.

“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion”. Journal of machine

learning research, 11(Dec) 2010, pp. 3371-3408.

[23] S.P. Luttrell. “Hierarchical self-organizing networks”. In: Proc. 1st IEE
Conf. Artificial Neural Networks. British Neural Network Soc., 1989.

pp. 2-6.
[24] D. Erhan, P.A. Manzagol, Y. Bengio, S.Bengio, andP. Vincent. “The

difficulty of training deep architectures and the effect of unsupervised

pre-training.” In Artificial Intelligence and Statistics,2009, pp.
153-160.

[25] A. Ng. “Sparse autoencoder”. CS294A Lecture notes, 72, 2011,pp

1-19.
[26] Y. Bengio, P. Lamblin, D. PopoviciandH. Larochelle. “Greedy

layer-wise training of deep networks”. In Advances in neural

information processing systems, 2007, pp. 153-160.
[27] D.H. Hubel, andT. N. Wiesel. “Receptive fields, binocular interaction

and functional architecture in the cat's visual cortex.” The Journal of

physiology, 160(1), 1962, pp 106-154.
[28] D.H. Hubel, andT.N. Wiesel. “Receptive fields and functional

architecture of monkey striate cortex”. The Journal of physiology,

195(1), 1968,pp. 215-243.
[29] Fukushima, K. “Neocognitron: A self-organizing neural network

model for a mechanism of pattern recognition unaffected by shift in

position”. Biological cybernetics, 36(4), 1980,pp. 193-202.
[30] Y. LeCun, B. Boser, J.S Denker, D. Henderson, R.E. Howard, W.

Hubbard, andL.D. Jackel,. “Backpropagation applied to handwritten

zip code recognition”. Neural computation, 1(4), 1989, pp 541-551.
[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based

learning applied to document recognition”. Proceedings of the IEEE,

86(11), 1998,pp. 2278-2324.
[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, and A.

Rabinovich. “Going deeper with convolutions”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition, 2015, pp.
1-9.

[33] O. Russakovsky, et. Al. "Imagenet large scale visual recognition

challenge." International journal of computer vision 115.3. 2015, pp.
211-252.

[34] K. S. Oh, and K. Jung. "GPU implementation of neural networks."

Pattern Recognition 37.6, 2004, pp 1311-1314.
[35] K. Chellapilla, S. Puri, and P. Simard. "High performance

convolutional neural networks for document processing." 2006.

[36] V. Romanuke. “Appropriate number and allocation of ReLUs in
convolutional neural networks”. NaukoviVisti NTUU KPI, (1), 2017,

pp. 69-78.

[37] D. Scherer, A. Müller, andS. Behnke.“Evaluation of pooling
operations in convolutional architectures for object recognition.” In

International conference on artificial neural networks. Springer, Berlin,

Heidelberg. 2010, September, pp. 92-101.
[38] A. Krizhevsky, I. Sutskever, andG.E. Hinton. “Imagenet classification

with deep convolutional neural networks”. In Advances in neural

information processing systems. 2012, pp. 1097-1105.
[39] I. Goodfellow et al. “Generative adversarial nets.” In: Advances in

neural information processing systems. 2014. pp. 2672-2680.

[40] T.C. Wang, M.Y. Liu, J.Y. Zhu, A.Tao, J. Kautz, and B. Catanzaro.
“High-resolution image synthesis and semantic manipulation with

conditional gans”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018,pp. 8798-8807.

[41] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and

X. Chen, “Improved techniques for training gans”. In Advances in
neural information processing systems, 2016. pp. 2234-2242.

[42] Y. Sun, X. Wang, andX. Tang.“Hybrid deep learning for face

verification.” In Proceedings of the IEEE international conference on
computer vision, 2013, pp. 1489-1496.

[43] O. Abdel-Hamid, L. Deng, and D. Yu. “Exploring convolutional neural

network structures and optimization techniques for speech
recognition.” In Interspeech,Vol. 11,2013, pp. 73-5.

[44] J.An, and S.Cho. “Variational autoencoder based anomaly detection

using reconstruction probability”. Special Lecture on IE, 2(1), 2015.
[45] S.Semeniuta, A. Severyn, and E. Barth. “A hybrid convolutional

variational autoencoder for text generation”. arXiv preprint

arXiv:1702.02390, 2017.
[46] L. Mescheder, S. Nowozin, and A. Geiger. “Adversarial variational

bayes: Unifying variational autoencoders and generative adversarial

networks”. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70. 2017, August pp. 2391-2400. JMLR.

org.

Rômulo Fernandes da Costa received his B.S. in Electrical Engineering

from Sao Paulo State University (UNESP),and received his MsC in
Electronic Engineering from Aeronautics Institute of Technology (ITA). He

is currently a PhD candidate at ITA, contributing with the Laboratories of

Space Robotics and Radar Signal Processing. His main areas of research are
space robotics, machine learning and radar signal processing.

Sarasuaty Megume Hayashi Yelisetty received her B. S. in Computer

Engineering from Vale do Paraiba University (UNIVAP), and received her

MsC in Computer Engineering from Aeronautics Institute of Technology
(ITA). She is currently a PhD candidate at ITA. Additionally, she has been

working at EMBRAER in software/airborne electronic hardware processes

during the last 8 years and has recognized experience in standards used for
airborne system and software such as DO-178B/C, DO-254 and

MIL-STD-498.

Johnny Cardoso Marques received the B.S. in Computer Engineering

from University of the State of Rio de Janeiro (UERJ), the M.Sc. (in

Aeronautical Engineering) and a PhD. (in Electronic and Computer
Engineering) both from Aeronautics Institute of Technology (ITA). He is a

current professor in the Aeronautics Institute of Technology (ITA).

Additionally, he worked at EMBRAER in software processes definition for
15 years and has recognized experience in standards used for airborne

systems and software such as DO-178C, DO-254, ARP-4754 and DO-200B.

He is also part of several committees in IEEE Standards Association.

Paulo Marcelo Tasinaffo is graduated in Mechanical Engineering from

the Federal University of Itajubá/MG (UNIFEI, 1996), obtaining a Master's
degree in Mechanical Engineering from the same Institution in 1998. In

2003, he received a Doctorate in Space Engineering and Technology from

the National Institute of Space Research (INPE) in Brazil. He is currently a
full professor of the Aeronautical Technological Institute (ITA) in São José

dos Campos/SP also in Brazil, with experience in Aerospace and Computer

Engineering and with emphasis on Artificial Neural Networks. The Prof.
Tasinaffo works mainly in the following subjects: modeling of non-linear

dynamic systems, computational mathematics, artificial intelligence, expert

systems, intelligent agents, neural control structures, evolutionary
computation and stochastic processes.

